

Science Curriculum Overview – Year 9

	Year 9	HT1	HT2	HT3	HT4	HT5	HT6
	Торіс	9A Genetics and Evolution 9E Making Materials 9I Forces and Motion	9B Plant Growth 9F Reactivity 9J Force fields and Electromagnets	Recap of KS3 Biology, chemistry and Physics through lessons and projects	Recap of KS3 Biology, chemistry and Physics through lessons and projects	CB1 Key concepts of Biology CC1-2 States of matter, methods of separating and purifying substances CP1 Motion	CP2 Forces
subject	Why this and why now?	 9A - in year 7 and 8 students learn about adaptations and variation and this is extended further in this unit to look at what happens if an organism does not adapt to changing environments 9E- students apply what they know about different chemicals to learn how they are used to make new materials and how bonding affects the properties of materials 9I -students develop their understanding of forces and energy to understand how these combine to make objects move 	 9B - in year 8 students learn how plants reproduce and in this unit students build on their knowledge of plants to learn about chemical reactions, plant adaptations and uses of plants in farming 9F - previously in KS3 students have learnt about atoms and chemical reactions. In this unit students learn why chemical reactions happen and how different factors affect the rate of chemical reactions 9J - students develop their knowledge of electricity, magnetism and gravity to compare different fields and their effects 	This is to ensure fundamental knowledge, skills and understanding from KS3 in year 7 and 8 is retained and any misconceptions are addressed. This will ensure mastery of the KS3 curriculum as topics are linked together for example exchange systems is linked to respiration	This is to ensure fundamental knowledge, skills and understanding from KS3 in year 7 and 8 is retained and any misconceptions are addressed. This will ensure mastery of the KS3 curriculum as topics are linked together for example exchange systems is linked to respiration	CB1 This Biology unit builds on the KS3 national curriculum to deepen understanding of the structure and function of cell organelles in animal, plants and bacteria, how to prepare microscope slides and calculate magnification, the structure and function of specialised cells in the reproductive system and exchange surfaces, the action of enzymes and how they are denatured. Finally, the unit moves to the transport of substances using diffusion, osmosis and active transport. CC1-2 This Chemistry unit builds on KS3 by recapping the particle model, how to separate substances but then application of separation techniques to making water potable (drinkable).	CP2 This Physics unit builds on motion in that motion is caused by forces and that Newton proposed 3 laws of motion that must always be applied. The unit then brings together motion and forces to explore stopping distances and crash hazards.

					CP1 This Physics topic builds on the KS3 knowledge of motion the terms scalar and vector and how to calculate speed and acceleration and how to use graphs to determine speed, acceleration and distance. Students are expected to recall speeds and accelerations of everyday objects and describe scientific investigations that investigate speed and acceleration	
What is the essential knowledge that needs to be remember ed?	9A Genetics and Evolution Causes of environmental variation, discontinuous and continuous variation, classification, inherited variation, normal distribution curves, discovery of DNA, DNA structure, importance of DNA, relationship between genes, chromosomes and DNA, extinction, competition, preserving biodiversity. Darwin's	9B Plant Growth Chemical reactions in plants, aerobic respiration, rates of photosynthesis, adaptations of plants, products from plants, how farmers grow crops, how selective breeding is carried out, problems caused by farming 9F Reactivity Know why explosions happen, review chemical and physical changes, gas pressure, compare the reactivity of	DNA, variation and adaptation, evolution and natural selection, biodiversity Project – animal smuggling – endangered animals, conservation and preserving biodiversity Project – enzyme investigation – planning an investigation into the effect of enzymes on gelling agents Project – teeth – communicating cause of tooth decay to the public	Periodic table Metals and non- metals, groups in the periodic table and trends and properties in groups Earth and atmosphere Changing atmosphere, structure of the Earth, Earth resources and rock cycle Project – carbon	CB1 Key concepts in Biology – Microscopes including parts of a microscope, how to calculate total magnification, preparing slides of plant cells, comparing light and electron microscopes, converting between sizes i.e. millimetres to micrometres, cell biology including animal, plant and bacterial cells	<u>CP2 Forces</u> – forces, calculating resultant forces, mass and weight and the key difference between them, Newton's three laws of motion, calculating momentum, stopping distances and what factors affect thinking and braking distances, crash hazards.
	theory of evolution <u>9E Making materials</u> Know the properties of ceramics and how they are made, polymer structures and uses, how composite materials are made and uses, problems of making and using materials, recycling and materials <u>9I Forces and Motion</u>	metals, rusting and prevention of rust, energy from chemical reactions, exothermic and endothermic changes, displacement reactions, extracting metals from their ores 9J Force fields and Electromagnets Force fields, magnetic and gravitational, static electricity	Chemistry revision and projects Separating substances Filtration, distillation, chromatography, particle model, states of matter and mixtures Chemical reactions Atoms, elements, compounds, writing	capture – research how we can deal with carbon dioxide in the future Project – Electrolysis – Planning an investigation into electrolysis Project – Nanoparticles – Communicating with	specialised cells and how they are adapted using egg, sperm and ciliated epithelial cells as examples, stem cells and cell differentiation, enzymes in nutrition, how enzymes work and what happens when they are placed in unfavourable conditions, transport of	

	Know how forces affect	and its effects, current	equations, types of reaction.	the public the uses of	substances using	
	objects and the way they	electricity and how it can be	energy in reactions and	nanoparticles	diffusion and osmosis	
	move, energy resources	measured and controlled,	speeding up reactions			
	and how they are used to	resistance and how to	Physical and Chemical	Physics revision and	CC1-2 States of Matter:	
	move things, energy stores	calculate it. factors that affect	Reactivity series, acids and	projects	Separating substances: -	
	and transfers, calculating	resistance, how electricity can	alkalis, indicators,	Models in science	states of matter, mixtures	
	speed, distance time	produce magnetism.	neutralisation, reactions of	Earth, moon and sun,	and how to separate	
	graphs, increasing sizes of	electromagnets and their	acids and metals, properties	solar system and	substances using	
	forces, turning forces and	uses	of materials	beyond, particle	filtration, crystallisation,	
	forces in equilibrium, work			model, pressure,	paper chromatography	
	done and how machines			diffusion and	and distillation, how to	
	magnify forces			Brownian motion	purify drinking water	
				Energy		
				Energy resources,	CP1 Motion - scalars and	
				energy stores and	vectors calculating	
				transfers, transferring	speed and acceleration	
				energy by heating,	calculating velocity and	
				paying for energy	using both distance /	
				Forces	time graphs and velocity	
				Forces around us,	/ time graphs to	
				balanced and	determine, speed.	
				unbalanced forces,	acceleration and	
				controlling forces,	distance	
				speed		
				Waves and fields		
				Describing waves,		
				sound and light		
				waves, gravitational		
				and magnetic fields,		
				electric fields		
				Machines		
				work done, moments		
				and levers, electricity,		
				electromagnets and		
				Droiget Fara and		
				Project – Ears and		
				Eyes – research into		
				Dionic ears and eyes		
				planning an		
				- planning an		
				how different		
				now different		
				variables affect the		

					acceleration of an object		
W th as nt ar wi as	hat is e sessme intent id how II you sess?	Each unit is assessed using an end of topic assessment and this will address any misconceptions and the teacher will re teach areas that students have not fully understood either a full lesson or in the 'do now'	Each unit is assessed using an end of topic assessment and this will address any misconceptions and the teacher will re teach areas that students have not fully understood either a full lesson or in the 'do now'	KS3 Year 9 baseline from active learn for Biology, Chemistry and Physics this assessment will baseline acquired knowledge, skills and understanding from KS3 and allow us to highlight gaps and misconceptions that need to be overcome before KS4 curriculum is taught.		Assess prior knowledge and understanding using baseline Formative assessment throughout lesson including rewind grids, quick quizzes and retrieval tasks Cumulative assessment CB1, CC1-2 and CP1-2	Assess prior knowledge and understanding using baseline Formative assessment throughout lesson including rewind grids, quick quizzes and retrieval tasks Cumulative assessment CB1, CC1-2 and CP1-2
W sh er loo	hat ould the id point ok like?	9A Genetics and Evolution Identify types of environmental variation and causes, explain problems with classification, identify types of inherited variation, explain how sexual reproduction causes variation, identify normal distribution, describe the structure of DNA, describe importance of DNA and the relationship between genes, chromosomes and DNA, explain how extinction occurs, explain how adaptations affect survival, explain how to preserve biodiversity, explain natural selection 9E Making Materials Identify ceramics and describe their uses, properties of ceramics.	<u>9B Plant Growth</u> Explain photosynthesis and respiration, explain factors that affect the rate of photosynthesis, describe how leaves, roots and stems are adapted for their functions, explain how substances enter and leave plants, explain how and why plants make different substances, explain the importance of nitrates, describe how pests and human populations alter food supply, explain how farmers boost food production, explain how plant varieties can be created, use models for example food webs and the carbon cycle to explain changes in an ecosystem, recognise the advantages and disadvantages of different farming methods 9F Reactivity	Biology revision and projects Cells, systems and movement Identify parts of animal, plant, bacteria and protista cells, describe function of organ systems and also the organisation of cells, tissues and organs, explain how muscles, ligaments and tendons work together to allow movement Exchange Systems Describe and explain how animals and plants get nutrition through digestive system (animals) and photosynthesis (plants), describe what is meant by a balanced diet, describe and explain gas exchange in the lungs (humans) and stomata (plants), link ideas to gas exchange to the damage caused by smoking Reproduction and health	Periodic table Identify on the periodic table where metals and non- metals, name and identify groups in the periodic table and describe the properties of groups in the periodic table Earth and atmosphere Describe how the atmosphere has changed over time, describe the structure of the Earth, State the advantages and disadvantages of recycling and describe the rock cycle Project – carbon capture – research how we can deal with rising carbon dioxide	CB1 Key concepts in Biology Identify parts of a microscope, use a microscope to magnify plant cells, calculate total magnification, image size, actual size and magnification, compare the resolution and magnification of light and electron microscopes, convert between different size units, identify and describe the function of organelles in a plant and animal cell, use standard form, identify structures in a bacterial cell and describe their function, explain the difference between plasmid and chromosomal DNA, describe and explain the structure and function of enzymes and how they	CP2 Forces Identify forces, describe when forces are balanced and unbalanced, calculate resultant forces, use the formula F=ma to investigate the acceleration of trolleys down a ramp, describe Newton's 3 laws of motion, calculate and describe momentum, identify features that make cars safe against crash hazards, define stopping distances, describe factors that affect thinking and braking distances, calculate stopping distances, describe and explain how road surface and conditions of brakes affect stopping distances

	name examples and uses	Identify and explain the	Structure and function of	levels by capturing	are involved in digestion,	
	of polymers, explain the	differences between physical	parts of the male and female	carbon	investigate the effect of	
	main properties of	and chemical changes, use	reproductive system,	Project – Electrolysis	pH on enzyme activity,	
	polymers, describe how	particle theory to explain gas	structure and function of egg	– plan an	describe and explain	
	polymers are made,	pressure, describe reactions	and sperm cells and how	investigation by	transport of substances	
	explain composite	of metals with water, dilute	they are specialised,	selecting variables,	using diffusion, osmosis	
	materials and give	acids and air, explain how	describe human life cycles	describing controls	and active transport,	
	examples, describe and	metals are placed in the	including puberty and	and ensuring	investigate osmosis in	
	justify the uses of some	reactivity series, explain how	structure and function of a	reliability and validity	potatoes	
	composite materials,	physical barriers and	plants reproduction system,	Project –		
	explain thermal	sacrificial protection prevent	define what is meant by a	Nanoparticles -	CC1-2 States of matter	
	decomposition, explain	rusting, describe test for	drug, explain the differences	communicate to the	and separating	
	exothermic and	oxygen, explain how	between stimulants and	public how we use	substances	
	endothermic reactions,	combustion reactions can be	depressants and describe	nanoparticles	Describe the 3 states of	
	explain problems caused	speeded up, classify changes	what is meant by a side		matter in terms of	
	by making and using	as being exothermic or	effect	Physics revision and	particle movement,	
	materials, describe	endothermic, explain why	Energy in Ecosystems	projects	arrangement and energy,	
	recycling and explain the	some reactions need a supply	Describe how a leaf is	Models in science	describe, identify	
	advantages of recycling	of energy, explain	adapted for photosynthesis,	Model how the earth	substances as being pure	
	9I Forces and Motion	displacement reactions,	define and explain cellular	moves around the	or mixtures, use practical	
	Recall different types of	predict displacement	respiration including the	sun and how the	techniques such as	
	forces, explain effects of	reactions, explain how metals	word equation, describe how	moon moves around	filtration, crystallisation,	
	balanced and unbalanced	are extracted based on their	animals are interdependent	Earth, describe what	distillation and	
	forces, explain why moving	reactivity, explain oxidation	on each other in an	makes up our solar	chromatography to	
	objects have a top speed,	and reduction	ecosystem and draw and	system and describe	separate substances,	
	recall ways energy is	9J Force Fields and	analyse simple food chains	what is meant by a	calculate RF factor,	
	stored and transferred,	Electromagnets	and webs	galaxy and a light	explain how to make	
	recall the law of	State what is meant by a	Genetics and Evolution	year	water potable and how	
	conservation of energy,	force field, describe the	Describe and explain the	Energy	desalination works	
	state what is meant by	shape of a magnetic field,	relationship between genes,	Identify energy		
	efficiency, describe	factors that affect strength	chromosomes and DNA and	resources as being	CP1 Motion	
	meanings of speed and	and gravity, calculate weight	the asexual and sexual	renewable and non-	Define scalar and vector	
	mean speed, use formula	and mass, describe how	reproduction, describe	renewable, describe	and identify scalars and	
	speed, distance and time,	electrically charged objects	adaptation and variation as	energy transfers and	vectors, calculate speed	
	use distance time graphs,	affect each other, recall how	being continuous and	explain different	and acceleration, use	
	describe how a simple	current behaves in series and	discontinuous and how	energy transfers by	distance – time graphs,	
	lever can multiply forces or	parallel circuits, describe how	variation can lead to natural	heating, describe and	use velocity – time	
	distances, identify the	voltage behaves in series and	selection, describe the term	explain how we pay	graphs to calculate	
	load, effort and pivot on a	parallel circuits, describe	biodiversity and explain why	for electricity and	acceleration and	
	diagram of a lever, factors	factors that affect resistance,	it is important to maintain	calculate usage	distance	
	that affect the size of a	use the formula relating	biodiversity	Forces		
	moment, explain why	voltage, current and		Identify forces and		
	something will balance if	resistance, describe an		use diagrams to show		

momente ere equel end	alastromagnet and its field	Droject onimal emuddling	if forces esting on on	
	describe how the strength of	ropacrobing the work of	abiast are belenged (
opposite, describe now				
simple machines magniny	an electromagnet can be	Dreiget on Tree	unbalanced, describe	
torces, describe factors	changed, uses of	Project – enzyme	pressure and	
that affect total work done	electromagnets	investigation – plan an	calculate it and	
		investigation that involves	calculate speed	
		selecting variables and	Waves and fields	
		ensuring reliability and	Describe waves as a	
		validity	transfer of energy,	
		Project – teeth –	describe how	
		communicating scientific	transverse and	
		ideas to the public, produce	longitudinal waves	
		a leaflet to show what tooth	travel and use sound	
		decay is and how to stop it	and light as	
			examples, describe	
		Chemistry revision and	gravitational,	
		projects	magnetic and electric	
		Separating substances	fields	
		Review the particle model	Machines	
		and state the properties of	Define the term 'work	
		solids, liquids and gases,	done' and calculate	
		describe changes of state,	it, describe how	
		describe and explain the	levers and moments	
		methods of filtration.	work, Draw series	
		chromatography and	and parallel circuits	
		distillation	and compare them in	
		Chemical reactions	terms of current and	
		Describe what is meant by a	potential difference,	
		atom, element and	describe what is	
		compound, write simple word	meant by an	
		equations, identify simple	electromagnet and	
		reactions like oxidation and	how they are used in	
		combustion, describe	motors	
		reactions as being	Project - Ears and	
		exothermic and endothermic	Eves - Research uses	
		reactions and describe and	of bionic ears and	
		explain factors that make	eves in medicine	
		reactions go faster (rate of	Project - Going faster	
		reaction)	-nlanning an	
		Physical and Chemical	investigation	
		Identify order of reactivity of	including selecting	
		metals and describe what is	variables controls	
		a motal oro uso a nH socio		
		a metal ore, use a pri scale		

			to identify acids, alkalis and	and reliability /		
			indicators, Describe	validity		
			neutralisation reactions and	Project – Speed limits		
			the reactants and products	- communicating		
			involved, write word	speed limits to the		
			equations to represent	public		
			reactions between acids and			
			metals, describe properties			
			of ceramics and polymers			
How does	9A	- 9B	KS3 Working Scientifically:	Physics:	KS4 working Scientifically	KS4 working Scientifically
it cover the	heredity as the process by	cells as the fundamental unit	-Scientific attitudes	-Energy	-Working scientifically	-Working scientifically
	which genetic information	of living organisms, including	-Experimental skills and	-Energy changes and	-Development of	-Development of
NC	is transmitted from one	how to observe, interpret and	investigations	transfers	scientific thinking	scientific thinking
	generation to the next	record cell structure using a	-Analysis and evaluation	-Changes in systems	-Experimental skills and	-Experimental skills and
	 reproduction in humans 	light microscope	-Measurement	-Describing motion	strategies	strategies
	(as an example of a	• the functions of the cell		-Forces	-Analysis and evaluation	-Analysis and evaluation
	mammal), including the	wall, cell membrane,	Biology:	- Pressure in fluids	-Vocabulary, units,	-Vocabulary, units,
	structure and function of	cytoplasm, nucleus, vacuole,	-Cells and organisation	-Balanced forces	symbols and	symbols and
	the male and female	chloroplasts • the role of	-The skeletal and muscular	-Forces and motion	nomenclature	nomenclature
	reproductive systems,	diffusion in the movement of	systems	-Waves		
	menstrual cycle (without	materials in and between	-Nutrition and digestion	-Sound waves	Key concepts of Biology	Forces (CP2)
	details of hormones),	cells • plants making	-Gas exchange systems	-Energy and waves	(CB1)	forces as vectors
	gametes, fertilisation,	carbohydrates in their leaves	-Reproduction	-Light waves	cells as the basic	acceleration caused by
	gestation and birth, to	by photosynthesis and	Health	-Current electricity	structural unit of all	forces; Newton's First
	include the effect of	gaining mineral nutrients and	-Photosynthesis	-Static electricity	organisms; adaptations	Law
	maternal lifestyle on the	water from the soil via their	-Cellular respiration	- Magnetism,	of cells related to their	weight and gravitational
	foetus through the	roots • the role of leaf	-Interactions and	-Physical changes	functions; the main sub-	field strength
	placenta • a simple model	stomata in gas exchange in	interdependencies	-Particle model	cellular structures of	decelerations and
	of chromosomes, genes	plants • reproduction in	-Inheritance, chromosomes,	-Energy in matter	eukaryotic and	braking distances
	and DNA in heredity,	plants, including insect	DNA and genes	-Space physics	prokaryotic cells	involved on roads, safety
	including the part played	pollination, seed and fruit	C C		enzymes	
	by Watson, Crick, Wilkins	formation • the	Chemistry;		factors affecting the rate	
	and Franklin in the	adaptations of leaves for	-The particulate nature of		of enzymatic reactions	
	development of the DNA	photosynthesis • aerobic	mater		the importance of cellular	
	model • reproduction in	respiration in living	-Atoms, elements and		respiration; the	
	plants, including flower	organisms, including the	compounds		processes of aerobic and	
	structure, wind and insect	breakdown of organic	-Pure and impure substances		anaerobic respiration	
	pollination, fertilisation,	molecules to enable all the	-Chemical reaction		carbohydrates, proteins,	
	seed and fruit formation	other chemical processes	-Energetics		nucleic acids and lipids	
	and dispersal, including	necessary for life • a word	-The periodic table		as key biological	
	quantitative investigation	summary for aerobic	-Materials		molecules, the need for	
	of some dispersal	respiration • the	-Earth and atmosphere		transport systems in	
	mechanisms • differences	interdependence of			-	

between species • the	organisms in an ecosystem,		multicellular organisms,	
variation between	including food webs and		including plants	
individuals within a	insect-pollinated crops • the			
species being continuous	importance of plant		Particle Model and	
or discontinuous, to	reproduction through insect		Separating mixtures	
include measurement and	pollination in human food		(CC1-2)	
graphical representation of	security • how organisms		changes of state of	
variation • the variation	affect, and are affected by,		matter in terms of	
between species and	their environment, including		particle kinetics, energy	
between individuals of the	the accumulation of toxic		transfers and the relative	
same species means	materials • the importance of		strength of chemical	
some organisms compete	maintaining biodiversity		bonds and intermolecular	
more successfully, which	N.B. Statements in italics		forces	
can drive natural selection	cover revision from other			
changes in the	units		Motion (CP1)	
environment may leave	9F		speed of sound,	
individuals within a	 the properties of the 		estimating speeds and	
species, and some entire	different states of matter		accelerations in everyday	
species, less well adapted	(solid, liquid and gas) in terms		contexts	
to compete successfully	of the particle model,		interpreting quantitatively	
and reproduce, which in	including gas pressure •		graphs of distance, time,	
turn may lead to extinction	changes of state in terms of		and speed	
 the importance of 	the particle model • a simple			
maintaining biodiversity	(Dalton) atomic model •			
and the use of gene banks	chemical symbols and			
to preserve hereditary	formulae for elements and			
material.	compounds • conservation of			
9E	mass in changes of state and			
 chemical symbols and 	chemical reactions •			
formulae for elements and	chemical reactions as the			
compounds • the concept	rearrangement of atoms •			
of a pure substance • the	representing chemical			
identification of pure	reactions using formulae and			
substances • combustion,	using equations •			
thermal decomposition,	combustion, thermal			
oxidation and	decomposition, oxidation and			
displacement reactions •	displacement reactions •			
chemical reactions as the	energy changes on changes			
rearrangement of atoms •	of state (qualitative) •			
representing chemical	exothermic and endothermic			
reactions using formulae	chemical reactions			
and using equations •	(qualitative).			
exothermic and	91			

	endothermic chemical	 comparing the starting with 		
	reactions (qualitative) •	the final conditions of a		
	properties of ceramics,	system and describing		
	polymers and composites	increases and decreases in		
	(qualitative) • the	the amounts of energy		
	production of carbon	associated with changes in		
	dioxide by human activity	positions in a field, in elastic		
	and the impact on climate	distortions and in chemical		
	 Earth as a source of 	compositions • non-contact		
	limited resources and the	forces: gravity forces acting at		
	efficacy of recycling.	a distance on Earth and in		
	91	space, forces between		
	speed and the quantitative	magnets and forces due to		
	relationship between	static electricity • electric		
	average speed, distance	current, measured in		
	and time (speed =	amperes, in circuits, series		
	distance/ time) • the	and parallel circuits, currents		
	representation of a journey	add where branches meet		
	on a distance-time graph	and current as flow of charge		
	 relative motion: trains 	 potential difference, 		
	and cars passing one	measured in volts, battery		
	another • simple	and bulb ratings; resistance,		
	machines give bigger force	measured in ohms, as the		
	but at the expense of	ratio of potential difference		
	smaller movement (and	(p.d.) to current • differences		
	vice versa): product of	in resistance between		
	force and displacement	conducting and insulating		
	unchanged • work done	components (quantitative) •		
	and energy changes on	separation of positive or		
	deformation • non-contact	negative charges when		
	forces: gravity forces	objects are rubbed together:		
	acting at a distance on	transfer of electrons, forces		
	Earth and in space, forces	between charged objects •		
	between magnets and	the idea of electric field,		
	forces due to static	forces acting across the		
	electricity • forces as	space between objects not in		
	pusnes or pulls, arising	contact • magnetic poles,		
	from the interaction	attraction and repuision •		
	between two objects •	magnetic fields by plotting		
	using force arrows in	with compass, representation		
	diagrams, adding forces in	by field lines • the magnetic		
	one dimension, balanced	effect of a current,		
	and unbalanced forces •	electromagnets, D.C. motors		

	forces: associated with	(principles only) • gravity		
	deforming objects:	(principles only) gravity		
	strotching and squashing	dravitational field strongth (d)		
	enringe: with rubbing	on Earth $\sigma = 10 \text{ N/kg}$		
	- springs, with rubbing	different on other planets and		
	and metion between	atores growity forece between		
	surfaces, with pushing	Stars, gravity forces between		
	things out of the way;	Earth and Moon, and		
	resistance to motion of air	between Earth and Sun		
	and water • forces	(qualitative only).		
	measured in newtons,			
	measurements of stretch			
	or compression as force is			
	changed • other			
	processes that involve			
	energy transfer: changing			
	motion, dropping an			
	object, completing an			
	electrical circuit, stretching			
	a spring, metabolism of			
	food, burning fuels •			
	energy as a quantity that			
	can be quantified and			
	calculated; the total			
	energy has the same value			
	before and after a change			
	 comparing the starting 			
	with the final conditions of			
	a system and describing			
	increases and decreases			
	in the amounts of energy			
	associated with			
	movements,			
	temperatures, changes in			
	positions in a field, in			
	elastic distortions and in			
	chemical compositions •			
	using physical processes			
	and mechanisms, rather			
	than energy, to explain the			
	intermediate steps that			
	bring about such changes.			