Year 7 Curriculum Overview

	Year 7	HT1	HT2	HT3	HT4	HT5	HT6
	Topic	Algebraic Thinking	Place Value \& Proportion	Applications of Number	Directed Number \& Fractional Thinking	Lines \& Angles	Reasoning with Number
	Why this and why now?	Sequences Pupils will be used to spotting and developing patterns from primary. This is continued in this unit before developing more formal methods to find the nth term rules. This topic helps to build the idea of linear sequence which is used with equation of a straight line and proportion. The pupils will also use this topic later when they develop techniques with quadratic sequences. Algebraic Notation Pupils use their knowledge of function machines from primary to develop algebraic skills in this area. This unit of work is the building block for many units of work as the pupils develop their algebraic skills through their education. Algebra plays a key part	Place value and ordering integers and decimals The majority of this material builds on what is taught at primary school. This is an excellent opportunity to secure knowledge and fill in gaps with prior learning. There will be an opportunity to extend pupil knowledge through standard form. This topic is again a building block for many future topics. Pupils being fluent is basic numeracy is important for all future topics as well as having basic skills for life. Fraction, decimal and percentage equivalence Again, this topic allows for further depth of material taught at	Solving problems with addition and subtraction This material builds on what is taught at primary school. This is an excellent opportunity to secure knowledge and fill in gaps with prior learning. There will be an opportunity to extend pupil knowledge through more complex standard form calculations. This work is further extended in spring term 2 as well as being a basic building block for the entire maths curriculum. Solving problems with multiplication and division Again, this topic allows for further depth of material taught at primary. Problems involving trapezia and some algebraic manipulation will also be covered in this topic	Directed number This material builds on what is taught at primary school. This is an excellent opportunity to secure knowledge and fill in gaps with prior learning. There will be an opportunity to extend pupil knowledge through looking at solutions to square roots and exploring higher powers and roots. This topic is crucial as a building block for numerous future topics. The pupils have to be fluent with directed number as they attempt more difficult topics in mathematics. (Directed number often causes confusion as it has not been fully understood) Fractional Thinking This material builds on what is taught at primary school. This is	Constructing, measuring and using geometric notation The pupils will have had limited experience of this topic at primary. It is therefore important to embed these skills at an early stage. This topic is crucial for future geometry work. This topic leads into loci and bearings. Geometric Reasoning Pupils will have a basic understanding of triangles and most quadrilaterals but this learning will be supplemented with properties of shapes up to a decagon. Pupils will also become fluent with angles in parallel lines. Pupils have to be fluent with the geometric reasoning as they build skills throughout their schooling. This is important later for circle theorem and geometric proof work	Developing number sense Pupils have been taught a number of techniques for numeracy. This topic looks at when best to apply certain techniques. Pupils need to develop a "feel" for mathematics to apply the correct method at the correct time. This is a basic building block for numerous topics in the curriculum moving forward and is crucial especially for pupils who study the foundation course at GCSE. Sets and probability Pupils will develop their use of sets and probability in this topic. This will be predominately new learning.

	especially in the Higher mathematics curriculum. Equalities and Equivalence The pupils further develop the use of the equals sign and start to solve basic equations. The equivalence sign is also introduced as a new symbol at this stage. Solving basic equations is a building block for numerous topics. It is also an area that is used across different topic areas especially for problem solving and finding unknows.	primary. The decimal topic taught previously can be explored in more depth. Each of these areas is developed in more detail. Many topic areas require fluency in these basic skills. These skills are also essential for A level and calculus.	This work is further extended in spring term 2 and Yr8 Autumn 1 as well as being a basic building block for the entire maths curriculum Fractions and percentages of amounts Again, this topic allows for further depth of material taught at primary. The pupils will further extend their knowledge by looking at fractions and percentages greater than 1. This unit of work is further extended in Year 8 Autumn 2.	an excellent opportunity to secure knowledge and fill in gaps with prior learning. There will be an opportunity to extend pupil knowledge through looking at mixed number fractions and extending further to algebraic fractions Again, this topic is crucial as pupils move forward with their mathematics. They need to be fluent with their fraction skills to order to access algebraic manipulation in future years as well as across a variety of numeracy strands.		This is a crucial topic for HCF and LCM work. As we progress through the curriculum more notation will be developed and use of Venn diagrams with more complexity. Prime numbers and Proof This unit develops work from primary and builds on the work in the previous unit. This work will help to develop skills for future work on algebraic proof and number sense.
What is the essential knowledge that needs to be remembered?	Sequences Represent sequences in tables and graphs Recognise the difference between linear and non-linear sequences. Explain term-to-term rules in words. Algebraic Notation Use inverse operations to find the input given the output	Place value and ordering integers and decimals Recognise the place value of any number in an integer up to one billion Understand and write integers up to one billion in words and figures Work out intervals on a number line Position integers on a number line	Solving problems with addition and subtraction._Properties of addition and subtraction Mental strategies for addition and subtraction Use formal methods for addition of integers Use formal methods for addition of decimals Use formal methods for subtraction of integers	Directed number. Understand and use representations of directed numbers Order directed numbers using lines and appropriate symbols Perform calculations that cross zero Add directed numbers Subtract directed numbers Multiplication of directed numbers	Constructing, measuring and using geometric notation Understand and use letter and labelling conventions including those for geometric figures Draw and measure line segments including geometric figures Understand angles as a measure of turn Classify angles	Developing number sense Know and use mental addition and subtraction strategies for integers Know and use mental multiplication and division strategies for integers Know and use mental arithmetic strategies for decimals

- Move freely between different numerical, algebraical and diagrammatic representations.
- Use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships.
- Recognise and use relationships between operations including inverse operations

Equality and Equivalence

- Use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships.
- Simplify and manipulate algebraic expressions to maintain equivalence by collecting like terms
- Use approximation through rounding to estimate answers
- Describe, interpret and compare observed distributions of a single variable through: the median and the range.
- Interpret and compare numbers in standard form.

FDP Equivalence

- Consolidate their understanding of the number system and place value to include decimals, fractions.
- Move freely between different numerical representations [for example, equivalent fractions, fractions and decimals].
- Extend their understanding of the number system; make connections between number relationships.
- Express one quantity as a fraction of another where the fraction is less than one and greater than one.
- Define percentage as 'number of parts

Use formal written methods, applied to positive integers and decimals.

- Recognise and use relationships between operations including inverse operations.
- Derive and apply formulae to calculate and solve problems involving: perimeter.
- Construct and interpret appropriate tables, charts and diagrams, including frequency tables, bar charts and pictograms for categorical data, and vertical line (or bar) charts for ungrouped numerical data.

Fractions and
 Percentages of
 Amounts

- Use the four operations, including formal written methods, applied to integers, decimals, proper and improper fractions.
- Interpret fractions and percentages as operators.
expressions, including scientific formulae
- understand and use the concepts and vocabulary of expressions, equations, inequalities, terms and factors
- simplify and manipulate algebraic expressions to maintain equivalence
- understand and use standard mathematical formulae

Addition and Subtraction of

 Fractions- move freely between different numerical, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals]
- express one quantity as fraction of another where the fraction is less than 1 and greater than 1
angles
- Construct and interpret pie charts for categorical, ungrouped and grouped numerical data
- Identify and construct triangles reasoning
- Use language and properties precisely to analyse 2-D shapes.
- Begin to reason deductively in geometry including using geometrical constructions
- Describe, sketch and draw using conventional terms and notations: points, lines, parallel lines, perpendicular lines, right-angles, regular polygons, and other polygons that are reflectively and rotationally symmetric.
- Use the standard conventions for labelling sides and angles.
- Derive and illustrate properties of
involvin $\underset{A C A D}{ }$ randomness,, arr. wor
fairness, equally and unequally likely outcomes, using appropriate language and the 0 1 probability scale.
- Understand that the probabilities of all possible outcomes sum to 1.
- Enumerate sets and unions/intersections of sets
systematically, using tables, grids and Venn diagrams.
- Generate theoretical sample spaces for single and combined events with equally likely and mutually exclusive outcomes and use these to calculate theoretical probabilities.
- Appreciate the infinite nature of the sets of integers, real and rationa numbers.

Prime Numbers and Proof

- Use the concepts and vocabulary of prime numbers, factors (or divisors),

