Year 11 Curriculum Overview

move freely numerical, algebraic, graphical and diagrammatic representations

- plot and interpret graphs
- interpret the gradient of a straight line graph as a rate of change
- use the form $y=$ $\mathrm{mc}+\mathrm{c}$ to identify parallel \{and perpendicular\} lines; find the equation of the line through two given points, or through one point with a given gradient
- find approximate solutions to two simultaneous equations in two variables (linear/linear \{or linear/quadratic\}) using a graph
- move freely between different numerical, algebraic, graphical and
- diagrammatic representations
- recognise, sketch and interpret graphs of linear functions, quadratic functions simple cubic
know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments \{and proofs\} simplify and manipulate algebraic expressions by: factorising quadratic expressions of the form $\times 2+b x+c$, including the difference of two squares; \{factorising quadratic expressions of the form ax2 $+b x+c\}$ know the difference between an equation and an identity; solve quadratic equations \{including those that require rearrangement $\}$ algebraically by factorising, \{by completing the square and by using the quadratic formula\} identify and interpret roots; deduce roots
areas and volumes using ratio notation and/or scale factors; make links to similarity
- understand that X is inversely proportional to Y is equivalent to X is
proportional to
- \{construct and\} interpret equations that describe direct and inverse proportion
- extend and formalise their knowledge of ratio and proportion, including trigonometric ratios, in working with measures and geometry, and in working with proportional relations algebraically and graphically
- Reason deductively in geometry, number and algebra, including geometrical constructions.
- \quad apply and prove the standard circle theorems concerning angles, radii, tangents and
describe
translations as 2D vectors
- reason deductively in geometry, number and algebra, including using geometrical constructions
- interpret and use fractional \{and negative\} scale factors for enlargements \{describe the changes and invariance achieved by combinations of rotations, reflections and translations\}
- recognise, sketch
and interpret graphs of \{the trigonometric functions (with arguments in degrees) for angles of any size\}
- \{sketch translations and reflections of the graph of a given function\}
- explore what can and cannot be inferred in statistical and probabilistic settings, and

- - calculate or estimate gradients of graphs and areas under graphs
- (including quadratic and other non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts\}
interpret simple expressions as functions with inputs and outputs; \{interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function'\} solve two simultaneous equations in two variables
(linear/linear \{or linear/quadratic\}) algebraically; find approximate solutions using a graph
- identify and interpret roots; deduce roots algebraically \{and turning points by completing the square\}
- solve linear inequalities in one \{or two\} variable\{s\}, \{and quadratic inequalities in one variable\}; represent the solution set on a number line, \{using set notation and on a graph\}
recognise, sketch and interpret graphs
\{and quadratic nequalities in one variable\}; represent he solution set on a number line, \{using set notation and on a graph\}
expressions are equivalent, and use algebra to support and construct arguments \{and proofs\}
- apply the concepts of congruence and similarity
- make and use connections between different parts of mathematics to solve problems
- \quad \{change recurring decimals into their corresponding fractions and vice versa\}
- apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors; \{use vectors to construct geometric arguments and proofs\}

		of quadratic functions apply Pythagoras' Theorem and trigonometric ratios to find angles and lengths in rightangled triangles \{and, where possible, general triangles\} in two \{and three\} dimensional figures					

