

Computing Curriculum Year 9

	Year 9	<u>HT1</u>	HT2	<u>HT3</u>	HT4	<u>HT5</u>	<u>HT6</u>
	Topic Big Idea/Question Why this and why pow?	Topic 1 Cyber security This unit takes the learners on an eve-	Topic 2 Enterprise This is a separate unit of work to give students a	Topic 3 Data Science In this unit, learners will be introduced to data	Topic 4 Python 2 – Sequence of data This unit introduces learners to how data can	Topic 5 Physical Computer programming This unit applies and enhances the learners'	Topic 6 Representation – going audio visual In this unit, learners will focus on digital media
Computing	why now? What is the content doing here? How does it integrate to prior learning or prepare students for future learning? Is it an opportunity for cumulative learning or to achieve proficiencies? Does it provide a step to collective sufficiency?	learners on an eye- opening journey of discovery about techniques used by cybercriminals to steal data, disrupt systems, and infiltrate networks. The learners will start by considering the value of their data to organisations and what they might use it for. They will then look at social engineering techniques used by cybercriminals to try to trick users into giving away their personal data. The unit will look at the more common cybercrimes such as hacking, DDoS attacks, and malware, as well as looking at methods to protect ourselves and our networks against these attacks.	work to give students a brief understanding of the BTEC enterprise course which students can opt for at GCSE level. This has been placed in the Y9 curriculum at this point as students have not yet taken their options. The aspect taught will be the background information regarding how SME's begin life, the types of SME's that start up. The learners will also look at The skills and characteristics of the entrepreneurs who start up these SME's.	be introduced to data science, and by the end of the unit they will be empowered by knowing how to use data to investigate problems and make changes to the world around them. Learners will be exposed to both global and local data sets and gain an understanding of how visualising data can help with the process of identifying patterns and trends. Towards the end of the unit, the learners will go through the steps of the investigative cycle to try to solve a problem in the school using data.	learners to how data can be represented and processed in sequences, such as lists and strings. The lessons cover a spectrum of operations on sequences of data, that range from accessing an individual element to manipulating the entire sequence. Great care has been taken so that the selection of problems used in the programming tasks are realistic and engaging: learners will process solar system planets, book texts, capital cities, leaked passwords, word dictionaries, ECG data, and more. A range of pedagogical tools are employed throughout the unit, with the most prominent	enhances the learners' programming skills in a new engaging context: physical computing, using the BBC micro:bit. In the first half of the unit, learners will get acquainted with the host of components built into the micro:bit, and write simple programs that use these components to interact with the physical world. In the process, they will refresh their Python programming skills and encounter a range of programming patterns that arise frequently in physical computing applications. In the second half, learners will work in pairs to build a physical computing project. They will be required to select and design their project	rocus on digital media such as images and sounds, and discover the binary digits that lie beneath these types of media. Just like in the previous unit, where learners examined characters and numbers, the ideas that learners need to understand are not really new to them. You will draw on familiar examples of composing images out of individual elements, mixing elementary colours to produce new ones, and taking samples of analogue signals, to illustrate these ideas and bring them together in a coherent narrative. This unit also has a significant practical aspect. Learners will use

				being pair programming, live coding, and worked examples. The Year 7 and 8 Programming units are prerequisites for this unit. It is assumed that learners are already able to write Python programs that display messages, receive keyboard input, use simple arithmetic expressions, and control the flow of program execution through selection and iteration structures.	purposefully, apply what they have learnt by building a prototype, and keep a structured diary throughout the process. The Year 8 and 9 programming units are prerequisites for this unit. It is assumed that learners are already able to write Python programs that use variables and data structures to keep track of information. They are also expected to be able to combine sequence, selection, iteration, and function/method calls to control the flow of program execution	relevant software (GIMP and Audacity, in this case) to manipulate images and sounds and get an idea of how the underlying principles of digital representations are applied in real settings. This unit builds on the material from the Year 8 unit, 'Representations: from clay to silicon'.
What is the essential knowledge that needs to be remembered? What are the key facts, skills, and experiences that you want students to remember? What are the substantive and disciplinary concepts? Does the knowledge	The aim of this lesson is to introduce the learners to the unit and to help them understand the value of data to companies. The focus will be on what data companies collect from their users and how they use it. Learners will explore this topic through scenarios as well as by looking at the privacy policies of some tech companies that they may already be giving data to. They will be introduced briefly to the law	Learners will show that they understand how far the characteristics of a selected local SME and its owners contribute to its levels of success. They will carefully consider the purpose of the SME and each of its characteristics, including the number of people who run the enterprise, the number of people it employs, the type of ownership and whether the enterprise operates physically, online, or both.	The aim of this lesson is to introduce the learners to data science, and in particular, how visualising data can help us to provide insights that may not be as obvious when looking at raw data. The learners will investigate a couple of historical examples that highlight the value in visualising data, before using an online tool to help them visualise a small data set of TV viewing figures in order to gain an insight. The	This introductory lesson serves a double purpose: it reconnects learners with Python, making sure they can read and create simple programs that use selection, and it also takes a step forward, providing a very gentle introduction to lists. This lesson provides learners with an overview of the operations that are commonly performed on lists: adding, removing, or modifying items; locating or counting occurrences of particular items, etc.	This introductory lesson is meant to get learners acquainted with the micro:bit. They will explore its hardware components, so that they develop an awareness of its capabilities. They will also write and execute their first Python programs on the micro:bit, so that they familiarise themselves with the development environment, the practicalities of flashing their programs, and some simple coding patterns.	Digital pictures are formed out of individual pixels (picture elements), just like the Greek and Roman mosaics are formed out of individual pieces of glass or stone. However, unlike their ancient counterparts, the elements in digital mosaics are aligned in rows and columns, with the colour of each element represented as a sequence of binary digits. In this lesson, learners will create digital mosaics pixel by pixel, and

_							
	students leave	regarding data protection		lesson will conclude with	Learners are presented	At the end of the lesson,	experience how an image
	with a good	and will reflect on why	They will also consider	learners looking at a data	with a set of short	the learners will discuss	composed of individual
	understanding?	cybercriminals might	how the characteristics of	set and deciding what it	challenges. They are	what makes physical	coloured elements can
	<u>Substantive – key</u>	want to gain access to	the entrepreneur running	would be useful to	asked to identify the list	computing different from	correspond to a
	<u>facts</u>	data.	the SME have	visualise. The homework	operations that would be	what they have been	sequence of binary digits.
	Disciplinary-	The aim of this lesson is	contributed to its	is then to visualise that	relevant and apply them	doing so far.	This will help them form
	Methods of	for learners to become	success, such as how	data.	to perform the required	Through the course of	an initial understanding
	<u>subjects</u>	aware of how humans	innovation and		tasks.	this lesson, learners will	of how the images that
	Procedural-Skills	can be a weak point in	adaptability have helped		Through these	write programs that use	they encounter daily in
		the system, as well as	fill gaps in the market.	The previous lesson gave	challenges, learners will	the micro:bit's 5×5 LED	their digital devices
		looking at the social		learners an introductory	indirectly gain a better	display for output and	translate to nothing more
		engineering tactics	They will clearly show the	level of understanding of	understanding of the sort	some of the built-in	than long strings of bits.
		deployed by	importance of each	the purpose of data	of problems where lists	sensors for obtaining	In the early days of
		cybercriminals to dupe	characteristic in	science. In this lesson,	might be useful. They	input. This simple 'bare	personal computers,
		users into giving away	contributing to the	they will gain a better	also get accustomed to	bones' setup will allow	graphics were displayed
		data that could lead to	success of the enterprise,	understanding of how	using dot notation for list	them to focus on the	in a range of different
		further crime. The lesson	showing clear links and	ever-improving advances	methods, although this is	code and the patterns	resolutions and colour
		starts with the learners	interrelationships	in technology have made	not the focus of the	that often arise in	depths, depending on the
		using a Scratch program	between the two, and	it more feasible to collect,	lesson.	physical computing	hardware available.
		aimed at tricking them	they will be able to select	store, and analyse much	This lesson revolves	applications. At the same	Nowadays, while
		into giving away personal	which characteristics are	larger data sets than	around iteration using	time, they will get the	resolution is still being
		information. Learners will	most important,	previously. The learners	while loops, offering	chance to revisit some	increased, there is no
		then be taken through	supporting this with	will look at global data	learners a chance to	elementary programming	mention of colour depth
		the common social	relevant reasons and	sets, make predictions,	retrieve and apply	constructs they learnt in	or the number of possible
		engineering techniques,	examples.	and use visualisations of	relevant knowledge. In	previous units.	colours available. We
		completing exercises		the global data to prove	the first activities,	At the end of the lesson,	have used 24 or 32 bits
		through the lesson to		or disprove their	learners will practise	learners will be asked if	for years, as this has
		encourage them to think		predictions, as well as to	using list operations in	they have had any project	been sufficient.
		more deeply about the		investigate anomalies	iterative contexts.	ideas while exploring the	In the previous lesson,
		consequences of the		and outliers in the data.	Learners will be	micro:bit. Designing and	learners were introduced
		scams and how to avoid		The focus of this lesson	introduced to the	building their own project	to the idea that the
		becoming a victim.		is to introduce the	similarities between lists	is the ultimate goal of the	colour of each pixel can
		This lesson allows the		learners to the	and strings, which will be	unit.	be represented as a
		learners to explore the		investigative cycle PPDAC	based on what they	This lesson provides	sequence of binary digits.
		concept of hacking and		(problem, plan, data,	already know about	learners with examples of	In this lesson, they will
		the techniques used by		analyse, conclusion) and	operations relating to	using the micro:bit's	explore the most
		hackers to exploit		apply part of this cycle to	length, membership, and	General-Purpose Input	common representation
		computer systems. The		a data set about roller	access to individual	Output (GPIO) pins to	of colour as a mixture of
		lesson starts with the		coasters. The learners	characters. The final	connect it to external	red, green, and blue: the

learners looking for clues	
to hack into a friend's	
account to help his	
parents find out where he	
is. They will then be	
forced to think about the	
ethics behind their	
actions. The rest of the	
lesson looks at terms	
such as brute force	
attacks, hacktivists,	
script kiddies, and DDoS	
attacks. Some of the key	
terminology is introduced	
around the real-life	
example of the Dyn	
attack that disabled DNS	
servers (mostly in the	
USA) for a time. The	
lesson will conclude with	
the learners exploring the	
Computer Misuse Act and	
the consequences of	
hacking.	
The purpose of this	
lesson is to make	
learners aware of	
malware and the	
different categories of	
malware, as well as	
understanding how they	
work and the potential	
damage they can do. This	
lesson focuses more on	
the technical side than	
on prevention methods,	
which will be covered in	
Lesson 5 of this unit. This	
lesson will start with a	

start this lesson where	ac
they left off, by analysing	ap
a graph from a world	op
data set. The graph will	CC
be used to highlight the	In
correlations in the data	wi
and to investigate	ite
outlying data. After being	Th
introduced to PPDAC, the	ra
learners will be given a	fa
scenario to investigate	wi
what would make a cool	m
roller coaster. They will	m
refine the problem into	th
questions they can	ta
investigate, visualise the	Th
data, analyse, and report	ite
on their findings.	W
In this lesson, the	ทเ
learners will develop their	le
understanding of the	ap
investigative cycle by	pr
investigating a problem	Th
themselves. They will do	no
this by investigating the	ite
problem of litter in their	ch
school. They will work	w
through the first two	w
steps of the cycle	SC
(problem and plan). To do	in
this, they will pose	llr
questions and think	wi
about what data they will	Se
need to answer those	m
questions. Learners will	al
then make an electronic	kr
data capture form, on	ha
which they will go on to	Ea
enter the data that they	sh

tivity requires them to ply these string perations in an iterative ntext. this lesson, learners Il use a for-loop to erate over list items. ey will initially study a nge of examples – to miliarise themselves th its syntax, use, and echanics – before oving on to apply what ey've learnt to similar sks. e activities involve erating over lists of realorld textual and imerical data, requiring arners to recall and ply knowledge from the evious lessons. e lesson ends with a od towards using for to erate over the aracters of a string, nich may come in handy nen learners attempt to lve problems dependently. this lesson, learners Il be provided with a lection of meaningful ini-projects that will low them to apply the nowledge and skills they ave acquired so far. ach project contains a ort introduction that

hardware components, such as switches, speakers, and LEDs. The ability to connect the micro:bit to additional components enhances the built-in capabilities for input and output, which extends the range of projects the learners will be able to build. The lesson also demonstrates the use of the micro:bit's radio antenna in order to transmit and receive messages wirelessly. This is one of its most versatile capabilities and opens the way for projects that involve multiple micro:bits working together. At the end of the lesson, learners will again be asked about their project ideas. This time, they will also be asked to put their ideas on paper as homework, as they will find themselves taking their first creative design steps in the next lesson. The first three lessons allowed learners to explore the individual physical computing components at their disposal. Starting with

level of each of these colours in the mixture is represented using an 8bit sequence, producing a total of 24 bits to represent the colour of any single pixel. Learners will also build on their existing knowledge to calculate the representation size of digital images. After introducing learners to the ideas behind digital image representation, it's now time for a hands-on approach. In this lesson, learners will use appropriate software to perform a range of image manipulation functions and complete specific tasks and challenges. Learners will already have varying levels of experience and proficiency in using image editing software, so this is a flexible lesson, with a range of activities provided to suit different needs and tastes. Please note that this lesson is not intended to be a comprehensive introduction to image editing.

pretend scenario of the network having been infected by ransomware; the learners have to decide what action to take. They will then be introduced to the key terms before being instructed to do a research task to create a fact-based quick read on one type of malware they have learnt about. Towards the end of the lesson, the learners will be introduced to web bots and what task they perform on the internet. They will then be shown how bots are used in conjunction with malware and will be given a scenario that allows them to understand the hidden role of bots and what potential influence they could have on societal issues. The aim of this lesson is for learners to develop their understanding of the risks that cyberthreats pose to a network, followed by an exploration of some of the more common methods of defending a

network against attacks.

have collected. Following provides context, a this lesson, the learners will work through the what learners are remaining steps of the cycle to complete the investigation of the problem. In this lesson, learners will continue to develop their understanding of the investigative cycle by working through the data and analysis steps of the one. PPDAC cycle, using their own problem and the data that they are investigating. The lesson starts with a practical support around exercise that gives the learners some experience of data cleansing, to help them understand the problems that inaccurate data can the projects. pose for data analysis. In this final lesson, The learners will then download the data they have collected and clean it before uploading it to CODAP, where they will analyse it further by creating visualisations. In grasp of the this lesson, the learners will start to find some answers to the questions that they posed previously. It will also act as a platform for them to start drawing the assessment guiz, or are

detailed description of expected to develop, and a set of clues that will support them in putting together a solution. Each learner is expected to select one of the miniprojects and complete it within this lesson, or in the first part of the next Before starting work on the projects, two short activities will provide learners with additional accumulating sums and using for to iterate over strings. This is generally important and will also prove useful in some of learners will be given the opportunity to complete their mini-project or explore a second one. They will then take a quiz that will assess their programming concepts they have encountered throughout the unit. An optional activity is also provided, for learners that finish early with their

this lesson, they will build their own physical computing project, thus bringing together what they have learnt into a meaningful creation. The bulk of this lesson is dedicated to developing the learner projects. In pairs, they will work on their project prototype, following the proposal they drafted in the previous lesson. Halfway through the lesson, learners will pause to receive peer feedback, evaluate it, and fill in their project diary. By the end of the lesson, the project prototypes should largely be implemented. In this final lesson, learners will add the finishing touches to their projects: they will proceed to document what they have produced and reflect on the journey. Their projects will be evaluated using a rubric, and they will also take a guiz to assess the knowledge and skills they have individually acquired over the course of the unit. The lesson will conclude with a look

The instructions in the worksheets are tailored to GIMP (GNU Image Manipulation Program, available at gimp.org), which is open-source and cross-platform. However, the tasks can be performed with most image editing software.

Tracing the steps of a hiker through the altitude data that she transmits, learners will familiarise themselves with the basic concepts necessary for understanding any analogue to digital conversion: samples, sampling rate, and sample size. The main goal is for learners to understand the 'big picture' of how sound is captured. digitised, manipulated, and reproduced in digital devices. First, learners will revisit the digitisation process. in order to understand how the sampling rate and the sample size

affect the size and quality of the representation. Next, they will use a sound editing program that will allow them to

such as firewalls and	conclusions they need to	simply keen on an	at other existing physical	experiment with sound to
anti-malware. The	draw in the next and final	additional challenge.	computing platforms.	complete specific tasks
learners will look at the	lesson of the unit.			and challenges.
more common threats	In this lesson, the			Learners will have varying
that exist globally before	learners will complete			levels of experience and
thinking of the threats at	their school litter project			proficiency in using
the level of a school	by working through the			sound editing software,
network. Learners will	final steps of the PPDAC			so this is a flexible
discuss methods used by	cycle (analysis and			lesson, with a range of
network managers to	conclusions). The lesson			activities provided to suit
reduce risk. The	begins with the learners			different needs and
homework for this lesson	looking at an example			tastes.
is to write a short report	visualisation. They will be			The instructions in the
to the head teacher on	encouraged to think			worksheets are tailored
how to manage the most	about what they can			to Audacity
significant risk to the	learn from the data, as			(audacityteam.org), which
school network.	well as what additional			is open-source and cross-
This is the final lesson in	information would be			platform. However, the
the unit, and the learners	helpful for them to know.			tasks can be performed
are encouraged to reflect	This will model the			with most sound editing
on the learning that has	thought process they			software.
taken place throughout	need to go through when			To conclude the unit,
the unit before taking an	analysing and concluding			learners will spend half
end-of-unit assessment.	their projects. The			the lesson completing a
The learners will be	learners will take an end-			summative assessment.
prompted to reflect	of-unit assessment			In the time remaining,
through a game called	before thinking about			learners will be
Under Attack. Learners	how they could apply			introduced to alternative
will work in groups to	what they have learnt in a			(symbolic)
plan their defence	context that is relevant to			representations for
strategy on a tight budget	them and their lives.			images and sound, such
before cyberattacks start				as vector graphics and
to happen. The use of				MIDI music. They will also
their budget will be key in				be introduced to what
determining whether or				compression is and why it
not they were able to				is necessary.
defend the organisation				
against the attack.				
Learners will then take				

	their end-of-unit assessment and if there is time they will be directed to research the available career choices in cyber-defence.					
What is the assessment intent and how will you assess? What types of assessments and question stems are being used to demonstrate students are learning and	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led	Assessment will be in a variety of forms. There will also be an ongoing formative assessment based on student work. This will be in the form of presentations and questioning. This will be both Peer and Teacher led
progressing to produce ever higher standards of work? What formative assessment is	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.	Summative assessment will take place at the end of the unit of work based on topics learned. This will be a paper test.
there for component learning and summative for composite learning?	Each lesson will start with a mini quiz on forms. This will identify and test knowledge from the previous lesson and from previous topics covered. At the end of each lesson there will be a plenary on forms, and this will test knowledge and learning from the lesson.	Each lesson will start with a Do Now Activity. This will identify and test knowledge from the previous lesson and from previous topics covered. Each Lesson has an accompanying work sheet which is to be complete.	Each lesson will start with a mini quiz on forms. This will identify and test knowledge from the previous lesson and from previous topics covered. At the end of each lesson there will be a plenary on forms, and this will test knowledge and learning from the lesson.	Each lesson will start with a mini quiz on forms. This will identify and test knowledge from the previous lesson and from previous topics covered. At the end of each lesson there will be a plenary on forms, and this will test knowledge and learning from the lesson.	Each lesson will start with a mini quiz on forms. This will identify and test knowledge from the previous lesson and from previous topics covered. At the end of each lesson there will be a plenary on forms, and this will test knowledge and learning from the lesson.	Each lesson will start with a mini quiz on forms. This will identify and test knowledge from the previous lesson and from previous topics covered. At the end of each lesson there will be a plenary on forms, and this will test knowledge and learning from the lesson.

What does the	Explain the	Learners will have a clear	Define data	Write programs	Describe what	Describe how
end point look	difference between data	understanding of what an	science	that display messages,	the micro:bit is	digital images are
like?	and information	SME is.	Explain how	receive keyboard input,	List the	composed of individual
	Critique online		visualising data can help	and use simple	micro:bit's input and	elements
What is the	services in relation to	Learners will have an	identify patterns and	arithmetic expressions in	output devices	Recall that the
impost of this	data privacy	understanding and be	trends in order to help us	assignment statements	• Use a	colour of each picture
	Identify what	able to identify aspects of	gain insights	Use selection	development	element is represented
the student's	happens to data entered	SME's that make them	• Use an	(if-elif-else statements) to	environment to write,	using a sequence of
loorning? What	online	successful.	appropriate software tool	control the flow of	execute, and debug a	binary digits
ebould the	Explain the		to visualise data sets and	program execution	Python program for the	Define key
	need for the Data	Learners will be able to	look for patterns or	Locate and	micro:bit	terms such as 'pixels',
like wie the	Protection Act	identify entrepreneurial	trends	correct common syntax	Write programs	'resolution', and 'colour
like via trie	Recognise how	characteristics of the		errors	that use the micro:bit's	depth'
dissessment	human errors pose	owners of the SME.	Recognise	Create lists and	built-in input and output	Describe how
languaga usad2	security risks to data		examples of where large	access individual list	devices	an image can be
language useu?	Implement	Learners will Know:	data sets are used in	items	Write programs	represented as a
	strategies to minimise		daily life	Perform	that use GPIO pins to	sequence of bits
	the risk of data being	Size and features of	Select criteria	common operations on	generate output and	Describe how
	compromised through	SMEs	and use data set to	lists or individual items	receive input	colour can be
	human error	Sizes of SMEs	investigate predictions	Use iteration	Write programs	represented as a mixture
		Types of profit-	Evaluate	(while statements) to	that communicate with	of red, green, and blue,
	Define hacking	making	findings to support	control the flow of	other devices by sending	with a sequence of bits
	in the context of cyber	enterprises	arguments for or against	program execution	and receiving messages	representing each
	security	Features of	a prediction	Perform	wirelessly	colour's intensity
	 Explain how a 	SMEs		common operations on	 Design a 	Compute the
	DDoS attack can impact		Define the	lists or individual items	physical computing	representation size of a
	users of online services	Sectors and business	terms 'correlation' and	Perform	artifact purposefully,	digital image, by
	Identify	models in which	'outliers' in relation to	common operations on	keeping in mind the	multiplying resolution
	strategies to reduce the	enterprises operate	data trends	strings or individual	problem at hand, the	(number of pixels) with
	chance of a brute force	Different	Identify the	characters	needs of the audience	colour depth (number of
	attack being successful	sectors and	steps of the investigative	Use iteration	involved, and the	bits used to represent the
	Explain the	business	cycle	(for statements) to iterate	available resources	colour of individual
	need for the Computer	models	Solve a problem	over list items	Decompose the	pixels)
	Misuse Act	Different	by implementing steps of	Perform	functionality of a physical	Describe the
	List the	industries in	the investigative cycle on	common operations on	computing system into	trade-off between
	common malware threats	which	a data set	lists or strings	simpler features	representation size and
	Examine how	enterprises	Use findings to	Use iteration	Implement a	perceived quality for
	different types of	operate	support a	(for loops) to iterate over	physical computing	digital images
	malware causes		recommendation	lists and strings	project, while following,	

problems for computer	Aims and activities of		Use variables to	revising, and refining the	Perform basic
systems	enterprises	Identify the	keep track of counts and	project plan	image editing tasks using
Question how	Aims of	steps of the investigative	sums	Implement a	appropriate software and
malicious bots can have	enterprises	cycle	Combine key	physical computing	combine them in order to
an impact on societal	Impact of	Identify the data	programming language	project, while following,	solve more complex
issues	activities in	needed to answer a	features to develop	revising, and refining the	problems requiring image
	supporting the	question defined by the	solutions to meaningful	project plan	manipulation
Compare	aims of	learner	problems		 Explain how the
security threats against	enterprises	Create a data			manipulation of digital
probability and the	Impact of failing	capture form			images amounts to
potential impact to	to undertake	Describe the			arithmetic operations on
organisations	these activities	need for data cleansing			their digital
• Explain how	successfully	Apply data			representation
networks can be		cleansing techniques to a			Describe and
protected from common	Skills and characteristics	data set			assess the creative
security threats	of entrepreneurs	Visualise a data			benefits and ethical
a lala sette alla	Reasons why	Set			drawbacks of digital
Identify the most effective methode	entrepreneurs	 Visualise a data 			for a Connected World)
most effective methods	start their own	Set			for a connected world)
to prevent cyberattacks	enterprise	Analyse			Depall that
	 Impact of the 	nottorne trende and			
	skills and	outliers			Explain the
	characteristics	Draw			function of microphones
	of the	conclusions and report			and speakers as
	entrepreneur in	findings			components that capture
	helping to	mangs			and generate sound
	support the				Define key
	aims of the				terms such as 'sample'.
	enterprise				'sampling
					frequency/rate', 'sample
					size'
					Describe how
					sounds are represented
					as sequences of bits
					Calculate
					representation size for a
					given digital sound, given
					its attributes

						 Explain how attributes such as sampling frequency and sample size affect characteristics such as representation size and perceived quality, and the trade-offs involved Perform basic sound editing tasks using appropriate software and combine them in order to solve more complex problems requiring sound manipulation Recall that bitmap images and pulse code sound are not the only binary representations of images and sound available
How does it	The topic meets the NC	The learning will link to	The topic meets the NC	The topic meets the NC	The topic meets the NC	'compression', and describe why it is necessary The topic meets the NC
cover the NC? Refer explicitly to the NC or KS4 Assessment Objectives.	statement requirements for strands 3.9	current affairs – GREAT Lives, and the world outside of school. Numeracy and Literacy skills will be used as well as references to technological developments, historical events, and geographical areas. Curriculum links to: Maths	statement requirements for strands 3.8/3.9	statement requirements for strands 3.1/3.2/3.3/3.6	statement requirements for strands 3.1/3.2/3.3/3.6	statement requirements for strands 3.6

	English		
	Geography		